Journal cover Journal topic
Advances in Geosciences An open-access journal for refereed proceedings and special publications

Journal metrics

  • CiteScore<br/> value: 0.83 CiteScore
  • SNIP value: 0.527 SNIP 0.527
  • SJR value: 0.544 SJR 0.544
  • IPP value: 0.728 IPP 0.728
  • h5-index value: 13 h5-index 13
Adv. Geosci., 9, 137-143, 2006
© Author(s) 2006. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
26 Sep 2006
Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa
J. Schuol and K. C. Abbaspour Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
Abstract. Distributed hydrological models like SWAT (Soil and Water Assessment Tool) are often highly over-parameterized, making parameter specification and parameter estimation inevitable steps in model calibration. Manual calibration is almost infeasible due to the complexity of large-scale models with many objectives. Therefore we used a multi-site semi-automated inverse modelling routine (SUFI-2) for calibration and uncertainty analysis. Nevertheless, the question of when a model is sufficiently calibrated remains open, and requires a project dependent definition. Due to the non-uniqueness of effective parameter sets, parameter calibration and prediction uncertainty of a model are intimately related.

We address some calibration and uncertainty issues using SWAT to model a four million km2 area in West Africa, including mainly the basins of the river Niger, Volta and Senegal. This model is a case study in a larger project with the goal of quantifying the amount of global country-based available freshwater. Annual and monthly simulations with the "calibrated" model for West Africa show promising results in respect of the freshwater quantification but also point out the importance of evaluating the conceptual model uncertainty as well as the parameter uncertainty.

Citation: Schuol, J. and Abbaspour, K. C.: Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa, Adv. Geosci., 9, 137-143,, 2006.