Journal cover Journal topic
Advances in Geosciences An open-access journal for refereed proceedings and special publications
Journal topic

Journal metrics

Journal metrics

  • CiteScore value: 1.68 CiteScore
    1.68
  • SNIP value: 0.913 SNIP 0.913
  • SJR value: 0.651 SJR 0.651
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 34 Scimago H
    index 34
  • h5-index value: 13 h5-index 13
Volume 7
Adv. Geosci., 7, 25-29, 2006
https://doi.org/10.5194/adgeo-7-25-2006
© Author(s) 2006. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Adv. Geosci., 7, 25-29, 2006
https://doi.org/10.5194/adgeo-7-25-2006
© Author(s) 2006. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  23 Jan 2006

23 Jan 2006

Advances in the WRF model for convection-resolving forecasting

J. B. Klemp J. B. Klemp
  • National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado, USA

Abstract. The Weather Research and Forecasting (WRF) Model has been designed to be an efficient and flexible simulation system for use across a broad range of weather-forecast and idealized-research applications. Of particular interest is the use of WRF in nonhydrostatic applications in which moist-convective processes are treated explicitly, thereby avoiding the ambiguities of cumulus parameterization. To evaluate the capabilities of WRF for convection-resolving applications, real-time forecasting experiments have been conducted with 4 km horizontal mesh spacing for both convective systems in the central U.S. and for hurricanes approaching landfall in the southeastern U.S. These forecasts demonstrate a good potential for improving the forecast accuracy of the timing and location of these systems, as well as providing more detailed information on their structure and evolution that is not available in current coarser resolution operational forecast models.

Download
Citation
Share