Journal cover Journal topic
Advances in Geosciences An open-access journal for refereed proceedings and special publications
Journal topic

Journal metrics

Journal metrics

  • CiteScore value: 1.02 CiteScore
    1.02
  • SNIP value: 0.614 SNIP 0.614
  • SJR value: 0.435 SJR 0.435
  • IPP value: 0.97 IPP 0.97
  • h5-index value: 11 h5-index 11
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 32 Scimago H
    index 32
Volume 5
Adv. Geosci., 5, 37-41, 2005
https://doi.org/10.5194/adgeo-5-37-2005
© Author(s) 2005. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Adv. Geosci., 5, 37-41, 2005
https://doi.org/10.5194/adgeo-5-37-2005
© Author(s) 2005. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  16 Dec 2005

16 Dec 2005

Optimising soil-hydrological predictions using effective CART models

B. Selle and B. Huwe B. Selle and B. Huwe
  • Soil Physics Group, University of Bayreuth, 95440 Bayreuth, Germany

Abstract. There are various problems with process-based models at the landscape scale, including substantial computational requirements, a multitude of uncertain input parameters and the limited parameter identificability. Classification And Regression Trees (CART) is a recent data-based approach that is likely to yield advantages both over process-based models and simple empirical models. This non-parametric regression technique can be used to simplify process-based models by extracting key variables, which govern the process of interest at a specified scale. In other words, the model complexity can be fitted to the information content in the data. CART is applied to model spatially distributed percolation in soils using weather data and the groundwater depths specific to the site. The training data was obtained by numerical experiments with Hydrus1D. Percolation is effectively predicted using CART but the model performance is highly dependant on the available data and the boundary conditions. However, the effective CART models possess an optimal complexity that corresponds to the information content in the data and hence, are particularly suited for environmental management purposes.

Download
Citation
Share