Balidakis, K., Nilsson, T., Zus, F., Glaser, S., Heinkelmann, R., Deng, Z.,
and Schuh, H.: Estimating integrated water vapor trends from VLBI, GPS, and
numerical weather models: Sensitivity to tropospheric parameterization,
J. Geophys. Res.-Atmos., 123, 6356–6372, https://doi.org/10.1029/2017JD028049,
2018.
Benevides, P., Catalao, J., and Miranda, P. M. A.: On the inclusion of GPS
precipitable water vapour in the nowcasting of
rainfall, Nat. Hazards Earth Syst. Sci., 15, 2605–2616, https://doi.org/10.5194/nhess-15-2605-2015, 2015.
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H.:
GPS meteorology: Remote sensing of atmospheric water vapor using the Global
Positioning System, J. Geophys. Res., 97, 15784–15801, https://doi.org/10.1029/92jd01517, 1992.
Bevis, M., Businger, S., Chiswell, S. R., Anthes, R. A., Rocken, C., and
Ware,
R. H.: GPS meteorology: Mapping zenith wet delay onto precipitable water,
J. Appl. Meteorol., 33, 379–386, https://doi.org/10.1175/1520-0450(1994)033<0379:gmmzwd>2.0.co;2, 1994.
Böhm, J., Niell, A., Tregoning, P., and Schuh, H.: Global Mapping Function
(GMF): A new empirical mapping function, Geophys. Res. Lett., 33,
L07304, https://doi.org/10.1029/2005GL025546, 2006.
Böhm, J., Heinkelmann, R., and Schuh, H.: Short note: a global model of
pressure and temperature for geodetic applications, J. Geodesy, 81,
679–683, https://doi.org/10.1007/s00190-007-0135-3, 2007.
Böhm, J., Möller, G., Schindelegger, M., Pain, G., and Weber, R.:
Development of an improved empirical model for slant delays in the
troposphere (GPT2w), GPS Solut., 19, 433–441, https://doi.org/10.1007/s10291-014-0403-7, 2014.
Bonafoni, S., Mazzoni, A., Cimini, D., Montopoli, M., Pierdicca, N., Basili,
P., Ciotti, P., and Carlesimo, G.: Assessment of water vapor retrievals from
a GPS receiver network, GPS Solut., 17, 475–484, https://doi.org/10.1007/s10291-012-0293-5, 2013.
Bruyninx, C.: The EUREF Permanent Network; a multi-disciplinary network
serving surveyors as well as scientists, GeoInformatics, 7, 32–35, 2004.
Businger, S., Chiswell, S. R., Bevis, M., Duan, J., Anthes, R. A., Rocken,
C., Ware, R. H., Exner, M., VanHofe, H., and Solheim, F.: The promise of GPS
in Atmospheric Monitoring, B. Am. Meteorol.
Soc., 77, 5–18, https://doi.org/10.1175/1520-0477(1996)077<0005:tpogia>2.0.co;2, 1996.
Cao, Y. J., Guo, H., Liao, R. W., and Uradzinski, M.: Analysis of water vapor
characteristics of regional rainfall around Poyang Lake using ground-based
GPS observations, Acta Geod. Geophys., 51, 467–479, https://doi.org/10.1007/s40328-015-0137-1, 2016.
Collins, J. P. and Langley, R. B.: A tropospheric delay model for the user
of the Wide Area Augmentation System, Final contract report for Nav Canada,
Department of Geodesy and Geomatics, Engineering Technical Report No. 187,
University of New Brunswick, Fredericton, N.B., Canada, 1997.
Dach, R., Lutz, S., Walser, P., and Fridez, P.: GNSS Software Version 5.2.
User manual, Astronomical Institute, University of Bern, Bern Open
Publishing, ISBN: 978-3-906813-05-9, https://doi.org/10.7892/boris.72297, 2015.
Davis, J. L., Herring,
T. A., Shapiro, I. I., Rogers, A. E. E., and Elgered, G.: Geodesy by
radio interferometry: Effects of atmospheric modeling errors on estimates of
baseline length, Radio Sci., 20, 1593–1607, https://doi.org/10.1029/rs020i006p01593,
1985.
Duan, J., Bevis, M., Peng, F., Bock, Y., Steven, C., Steven, B., Christian,
R., Frederick, S., Terasa H., Randolph, W., Simon, M., and Herring, T. A.: GPS
Meteorology: Direct Estimation of the Absolute Value of Precipitable Water,
J. Appl. Meteorol., 35, 830–838, https://doi.org/10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2, 1996.
Fotiou, A. and Pikridas, C.: GPS and Geodetic Applications, 2nd edn.,
Zitis Publications, Thessaloniki, Greece, 2012.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33,
L08707, https://doi.org/10.1029/2006GL025734, 2006.
Haase, J., Ge, M., Vedel, H., and Candalais, E.: Accuracy and Variability of
GPS Tropospheric Delay Measurements of Water Vapor in the Western
Mediterranean, J. Appl. Meteorol., 42, 1547–1568,
https://doi.org/10.1175/1520-0450(2003)042<1547:AAVOGT>2.0.CO;2, 2003.
Krueger, E., Schuler, T., and Arbesser-Rastburg, B.: The Standard
Tropospheric Correction Model for the European Satellite Navigation System
Galileo. Proc. General Assembly URSI, New Delhi, India, available at:
https://www.researchgate.net/profile/Bertram_ArbesserRastburg/publication/252717445_THE_STANDARD_TROPOSPHERIC_CORRECTION_MODEL_FOR_THE_EUROPEAN_SATELLITE_NAVIGATION_SYSTEM_GALILEO/links/00b4952c318413b26d000000.pdf
(last access: June 2018), 2005.
Lagler, K., Schindelegger, M., Bohm, J., Krasna, H., and Nilsson, T.: GPT2:
Empirical slant delay model for radio space geodetic techniques,
Geophys. Res. Lett., 40, 1069–1073, https://doi.org/10.1002/grl.50288,
2013.
Liu, J., Chen, X., Sun, J., and Liu, Q.: An analysis of GPT2/GPT2w+Saastamoinen
models for estimating zenith tropospheric delay over Asian area, Adv.
Space Res., 59, 824–832, https://doi.org/10.1016/j.asr.2016.09.019, 2017.
Mendes, V. B., Prates, G., Santao, L., and Langley, R. B.: An evaluation of
the accuracy of models for the determination of weighted mean temperature of
the atmosphere, Proc. ION 2000, National Technical Meeting, Anaheim, CA,
USA, 433–438, 2000.
Moore, A. W., Small, I. J., Gutman, S. I., Bock, Y., Dumas, J. L., Fang, P.,
Haase, J. S., Jackson, M. E., and Laber, J. L.: National Weather Service
Forecasters Use GPS Precipitable Water Vapor for Enhanced PART B –
TECHNICAL ANNEX 7 Situational Awareness during the Southern California
Summer Monsoon, American Meteorological Society,
https://doi.org/10.1175/BAMS-D-14-00095.1, 2015.
Olalekan, I., Ludwig, C., and Joel, B. O.: A Presentation at the United
Nations /Russian Federation Workshop on the Applications of GNSS, 18–22 May
2015, Krasnoyarsk, Russian Federation, available at:
http://www.unoosa.org/documents/pdf/psa/activities/2015/RussiaGNSS/abstracts.pdf (last access: June 2018),
2015.
Pikridas, C., Katsougiannopoulos, S., and Zinas, N.: A comparative study of
zenith tropospheric delay and precipitable water vapor estimates using
scientific GPS processing software and web based automated PPP service, Acta
Geod. Geophys., 49, 177–188, https://doi.org/10.1007/s40328-014-0047-7, 2014.
Rahimi, Z., Shafri, H. Z. M., Othman, F., and Norman, M.: Effect of
tropospheric models on derived precipitable water vapor over Southeast Asia,
J. Atmos. Solar-Terr. Phy., 157–158, 55–66,
https://doi.org/10.1016/j.jastp.2017.02.011, 2017.
Rózsa, S.: Uncertainty considerations for the comparison of water vapour
derived from radiosondes and GNSS, in: Earth on
the Edge: Science for a Sustainable Planet, edited by: Rizos, C. and Willis, P., International Association of
Geodesy Symposia, Springer, Berlin, Heidelberg, 139, 65–78, https://doi.org/10.1007/978-3-642-37222-3_9, 2014.
Saastamoinen, J. J.: Contributions to the Theory of Atmospheric Refraction,
Bulletin Géodésique, 105, 279–298, https://doi.org/10.1007/BF02521844,
1972.
Shoji, Y., Kunii, M., and Saito, K.: Mesoscale data assimilation of
Myanmar cyclone Nargis. Part 2: assimilation of GPS derived precipitable
water vapor, J. Meteorol. Soc. Jpn., 89, 67–88,
https://doi.org/10.2151/jmsj.2011-105, 2011.
Vedel, H., Huang, X. Y., Haase, J., Ge, M., and Calais, E.: Impact ofGPS
zenith tropospheric delay data on precipitation forecasts in Mediterranean
France and Spain, Geophys. Res. Lett., 31, 2004, https://doi.org/10.1029/2003gl017715.
World Meteorological Organization: Guide to Meteorological Instruments, and
methods of Observation, Chapter 1, available at:
https://library.wmo.int/opac/doc_num.php?explnum_id=3179 (last access: June 2018), 2010.
Yao, Y., Shan, L., and Zhao, D.: Establishing a method of short-term rainfall
forecasting based on GNSS-derived PWV and its application, Sci.
Rep.-UK, 7, 12465, https://doi.org/10.1038/s41598-017-12593-z, 2017.
Zus, F., Dick, G., Douša, J., Heise, S., and Wickert, J.: The rapid and
precise computation of GPS slant total delays and mapping factors utilizing
a numerical weather model, Radio Sci., 49, 207–216, https://doi.org/10.1002/2013RS005280, 2014.