Journal cover Journal topic
Advances in Geosciences An open-access journal for refereed proceedings and special publications
Journal topic

Journal metrics

Journal metrics

  • CiteScore value: 1.02 CiteScore 1.02
  • SNIP value: 0.614 SNIP 0.614
  • SJR value: 0.435 SJR 0.435
  • IPP value: 0.97 IPP 0.97
  • h5-index value: 11 h5-index 11
  • Scimago H index value: 32 Scimago H index 32
Volume 45 | Copyright
Adv. Geosci., 45, 251-258, 2018
https://doi.org/10.5194/adgeo-45-251-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

  04 Sep 2018

04 Sep 2018

Preliminary studies for an integrated assessment of the hydrothermal potential of the Pechelbronn Group in the northern Upper Rhine Graben

Meike Hintze1,2, Barbara Plasse1, Kristian Bär1, and Ingo Sass1,2 Meike Hintze et al.
  • 1Geothermal Science and Technology, TU Darmstadt, 64287 Darmstadt, Germany
  • 2Darmstadt Graduate School of Energy Science and Engineering, 64287 Darmstadt, Germany

Abstract. The northern Upper Rhine Graben is due to its tectonic setting and the positive geothermal anomaly a key region for geothermal heat and power production in Europe. In this area the Upper Eocene to Lower Oligocene Pechelbronn Group reaches depths of up to 2800m with temperatures of locally more than 130°C. In order to assess the hydrothermal potential of the Pechelbronn Group a large dataset is compiled and evaluated. Petrophysical parameters are measured on core samples of eight boreholes (courtesy of Exxon Mobil). Additionally, 15 gamma-ray logs, 99 lithology logs as well as more than 2500 porosity and permeability measurements on cores of some of these boreholes are available.

The Lower Pechelbronn Beds are composed of fluvial to lacustrine sediments, the Middle Pechelbronn Beds were deposited in a brackish to marine environment and the Upper Pechelbronn Beds consist of fluvial/alluvial to marine deposits. In between the western and eastern masterfaults of the Upper Rhine Graben several fault blocks exist, with fault orientation being sub-parallel to the graben shoulders. During the syntectonic deposition of the Pechelbronn Group these fault blocks acted as isolated depocenters, resulting in considerable thickness and depositional facies variations on the regional and local scale (few tens to several hundreds of meters).

Laboratory measurements of sonic wave velocity, density, porosity, permeability, thermal conductivity and diffusivity are conducted on the core samples that are classified into lithofacies groups. Statistically evaluated petrophysical parameters are assigned to each group. The gamma-ray logs serve to verify the lithological classification and can further be used for correlation analysis or joint inversion with the petrophysical data.

Well data, seismic sections, isolines and geological profiles are used to construct a geological 3-D model. It is planned to use the petrophysical, thermal and hydraulic rock properties at a later stage to parametrize the model unit and to determine, together with the temperature and thickness of the model unit, the expected flow rates and reservoir temperatures and thus the hydrothermal potential.

Download & links
Download
Short summary
The presented study is conducted within the scope of the joint research project "Hessen 3D 2.0" (BMWI-FKZ: 0325944) and aims at assessing the hydrothermal potential of the Pechelbronn Group for direct heat use by means of an integrated 3-D structural-geothermal model that serves to locate potential exploration areas. The assessment is based on reservoir temperature, (net)thickness of the reservoir horizon as well as on petrophysical, thermal and hydraulic rock properties.
The presented study is conducted within the scope of the joint research project "Hessen 3D 2.0"...
Citation
Share