Journal cover Journal topic
Advances in Geosciences An open-access journal for refereed proceedings and special publications
Journal topic

Journal metrics

Journal metrics

  • CiteScore value: 1.02 CiteScore 1.02
  • SNIP value: 0.614 SNIP 0.614
  • SJR value: 0.435 SJR 0.435
  • IPP value: 0.97 IPP 0.97
  • h5-index value: 11 h5-index 11
  • Scimago H index value: 32 Scimago H index 32
Volume 45 | Copyright
Adv. Geosci., 45, 209-215, 2018
https://doi.org/10.5194/adgeo-45-209-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

  28 Aug 2018

28 Aug 2018

Modelling of multi-lateral well geometries for geothermal applications

Elisabeth Peters1, Guido Blöcher2, Saeed Salimzadeh3, Paul J. P. Egberts1, and Mauro Cacace2 Elisabeth Peters et al.
  • 1TNO Applied Geosciences, Utrecht, 3584 CB, the Netherlands
  • 2Helmholtz-Zentrum Potsdam – Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany
  • 3Danish Hydrocarbon Research and Technology Centre (DHRTC), Lyngby, Denmark

Abstract. Well inflow modelling in different numerical simulation approaches are compared for a multi-lateral well. Specifically radial wells will be investigated, which can be created using Radial Jet Drilling (RJD). In this technique, powerful hydraulic jets are used to create small diameter laterals (25–50mm) of limited length (up to 100m) from a well. The laterals, also called radials, leave the backbone at a 90° angle. In this study we compare three numerical simulators and a semi-analytical tool for calculating inflow of a radial well. The numerical simulators are FE approaches (CSMP and GOLEM) and an FV approach with explicit well model (Eclipse®). A series of increasingly complex well configurations is simulated, including one with inflow from a fault. Although all simulators generally are reasonably close in terms of the total well flow (deviations <4% for the homogeneous cases), the distribution of the flow over the different parts of the well can vary significantly. Also, the FE approaches are more sensitive to grid size when the flow is dominated by radial flow to the well since they do not include a dedicated well model. In the FE approaches, lower dimensional elements (1-D for the well and 2-D for the faults) were superimposed into a 3-D space. In case the flow is dominated by fracture flow, the results from the FV approach in Eclipse deviates from the FE methods.

Download & links
Download
Short summary
Accuracy of well inflow modelling in different numerical simulation approaches was compared for a multi-lateral well with laterals of varying diameter. For homogeneous cases, all simulators generally were reasonably close in terms of the total well flow (deviations smaller than 4 %). The distribution of the flow over the different laterals in a well can vary significantly between simulators (> 20 %). In a heterogeneous case with a fault the deviations between the approaches were much larger.
Accuracy of well inflow modelling in different numerical simulation approaches was compared for...
Citation
Share