Journal cover Journal topic
Advances in Geosciences An open-access journal for refereed proceedings and special publications
Journal topic

Journal metrics

Journal metrics

  • CiteScore value: 1.02 CiteScore 1.02
  • SNIP value: 0.614 SNIP 0.614
  • SJR value: 0.435 SJR 0.435
  • IPP value: 0.97 IPP 0.97
  • h5-index value: 11 h5-index 11
  • Scimago H index value: 32 Scimago H index 32
Volume 45 | Copyright
Adv. Geosci., 45, 105-113, 2018
https://doi.org/10.5194/adgeo-45-105-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

  09 Aug 2018

09 Aug 2018

Carbon in global waste and wastewater flows – its potential as energy source under alternative future waste management regimes

Adriana Gómez-Sanabria, Lena Höglund-Isaksson, Peter Rafaj, and Wolfgang Schöpp Adriana Gómez-Sanabria et al.
  • International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

Abstract. This study provides a quantification of the maximum energy that can be generated from global waste and wastewater sectors in the timeframe to 2050, as well as of the potential limitations introduced by different future waste and wastewater management regimes. Results show that considerable amounts of carbon are currently stored in waste materials without being recovered for recycling or made available for energy generation. Future levels of energy recovery when maintaining current states of waste and wastewater management systems are contrasted with those that can be attained under a circular system identified here as a system with successful implementation of food and plastic waste reduction policies, maximum recycling rates of all different types of waste streams, and once the recycling capacity is exhausted, incineration of remaining materials to produce energy. Moreover, biogas is assumed to be produced from anaerobic co-digestion of food and garden wastes, animal manure, and anaerobically treated wastewater. Finally, we explore the limits for energy generation from waste and wastewater sources should the efficiency of energy recovery be pushed further through development of existing technology. We find that global implementation of such an ideal system could increase the relative contribution of waste and wastewater sources to global energy demand from 2% to 9% by 2040, corresponding to a maximum energy potential of 64EJ per year. This would however require widespread adoption of policies and infrastructure that stimulate and allow for large-scale waste prevention and separation, as well as highly advanced treatment processes. Giving priority to such efforts would enable circularity of the waste-energy system.

Download & links
Download
Short summary
This study shows that global implementation of a circular system to treat waste and wastewater could increase the relative contribution of these sources to global energy demand from 2 % to 9 % by 2040, corresponding to a maximum energy potential of 64 EJ per year. The outcome of the study is the result of compiling and analyzing data on waste and wastewater generation and treatment and developing future scenarios in which carbon flows and energy generation are quantified for 174 country-regions.
This study shows that global implementation of a circular system to treat waste and wastewater...
Citation
Share