Articles | Volume 44
https://doi.org/10.5194/adgeo-44-35-2017
https://doi.org/10.5194/adgeo-44-35-2017
12 May 2017
 | 12 May 2017

Detection of heat and cold waves in Montevergine time series (1884–2015)

Vincenzo Capozzi and Giorgio Budillon

Abstract. In recent years, extreme events related to cooling and heating have taken high resonance, motivating the scientific community to carry out an intensive research activity, aimed to detect their variability and frequency. In this work, we have investigated about the frequency, the duration, the severity and the intensity of heat and cold waves in a Southern Italy high-altitude region, by analysing the climatological time series collected in Montevergine observatory. Following the guidelines provided by CLIVAR project (Climate and Ocean Variability, Predictability and Change), we have adopted indicators based on percentiles and duration to define a heat wave and cold event.

Main results have highlighted a strong and significant positive trend in the last 40 years (1974–2015) in heat waves frequency, severity and intensity. On the contrary, in recent decades, cold wave events have exhibited a significant and positive trend only in intensity. Moreover, through the usage of two Wavelet Analysis tools, the Cross Wavelet Transform and the Wavelet Coherence, we have investigated about the connections between the extreme temperature events occurred in Montevergine and the large-scale atmospheric patterns. The heat wave events have exhibited relevant relationships with the Western European Zonal Circulation and the North Atlantic Oscillation, whereas the variability of cold wave events have shown linkages with the Eastern Mediterranean Pattern and the North Sea Caspian Pattern. In addition, the main features of synoptic patterns that have caused summer heat waves and winter cold waves in Montevergine site are presented.

Download
Short summary
The extreme temperature events, the heat and cold waves, besides to have a significant impact on human health and activities, have negative influences also on mountain ecosystems. This work provides a characterization of heat and cold waves variability and trends in high-elevation sites of Central Mediterranean area, by using the long-term temperature time series collected in Montevergine. Main results highlight a positive trend in heat waves frequency and severity in the last 40 years.