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Abstract. Turbulent planetary boundary layers (PBLs) con-
trol the exchange processes between the atmosphere and the
ocean/land. The key problems of PBL physics are to de-
termine the PBL height, the momentum, energy and mat-
ter fluxes at the surface and the mean wind and scalar pro-
files throughout the layer in a range of regimes from stable
and neutral to convective. Until present, the PBLs typical of
stormy weather were always considered as neutrally strati-
fied. Recent works have disclosed that such PBLs are in fact
very strongly affected by the static stability of the free atmo-
sphere and must be treated as factually stable (we call this
type of the PBL “conventionally neutral” in contract to the
“truly neutral” PBLs developed against the neutrally strati-
fied free flow).

It is common knowledge that basic features of PBLs ex-
hibit a noticeable dependence on the free-flow static stability
and baroclinicity. However, the concern of the traditional
theory of neural and stable PBLs was almost without excep-
tion the barotropic nocturnal PBL, which develops at mid
latitudes during a few hours in the night, on the background
of a neutral or slightly stable residual layer. The latter sep-
arates this type of the PBL from the free atmosphere. It is
not surprising that the nature of turbulence in such regimes is
basically local and does not depend on the properties of the
free atmosphere.

Alternatively, long-lived neutral (in fact only conditionally
neutral) or stable PBLs, which have much more time to grow
up, are placed immediately below the stably stratified free
flow. Under these conditions, the turbulent transports of mo-
mentum and scalars even in the surface layer – far away from
the PBL outer boundary – depend on the free-flow Brunt-
Väis̈alä frequency,N .

Furthermore, integral measures of the long-lived PBLs
(their depths and the resistance law functions) depend onN

and also on the baroclinic shear,S. In the traditional PBL
models both non-local parametersN andS were overlooked.

Correspondence to:S. S. Zilitinkevich
(sergej.zilitinkevich@fmi.fi)

One of possible mechanisms responsible for non-local fea-
tures of the long-lived PBLs could be the radiation of inter-
nal gravity waves (IGW) from the PBL upper boundary to
the free atmosphere and the IGW-induced transport of the
squared fluctuations of velocity and potential temperature.

The free-flow stability plays an especially important role
in is the conventionally neutral PBLs (those with the zero
potential-temperature flux at the surface:Fθ=0 at z=0, de-
veloped against non-zero static stability in the free atmo-
sphere:N>0).

The above reasoning obviously calls for a comprehensive
revision of the traditional theory. In a series of papers (quoted
below in References) an advanced theory has been proposed.
It includes the following developments.

1 Generalised scaling for the surface layer turbulence
accounting for the distant effect of the free-flow sta-
bility

In the nocturnal PBL, the proposed generalised scaling re-
duces to the Monin-Obukhov/Nieuwsadt theory. An addi-
tional length scale shown to be critical in the convention-
ally neutral and long-lived PBLs isLN=u∗/N , whereu∗

is the friction velocity. Figure 1 (after Zilitinkevich and
Esau, 2005) demonstrates its effect on the dimensionless
wind shear. Even more important is the effect ofLN on the
dimensionless temperature gradient (seeop. cit.) In the truly
neutral PBLs (whenFθ=0 at z=0 andN=0), an important
role is played by the PBL bulk length scaleu∗/|f |, wheref

is the Coriolis parameter.
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Figure 1. Velocity shear in stable PBL: 
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2 PBL depth formulation accounting for the free-flow
stability, baroclinicity and non-steady processes

The new formulation covers a wide range of regimes over-
looked in earlier works and shows quite narrow limits of ap-
plicability of the widely used bulk Richardson number ap-
proach. As an example, Fig. 2 (after Zilitinkevich and Esau,
2002, 2003) shows a very strong effect of the free-flow sta-
bility on the depth,h, of the conventionally neutral PBLs:
more than three times difference between the depths of the
truly neutral (N/|f |=0) and typical conventionally neutral
(µN=N/|f |=102) PBLs.

3 Generalised PBL bulk resistance and heat transfer
laws accounting for the effects of the free-flow stabil-
ity and baroclinicity on the A, B and C stability func-
tions

We are dealing with the well known laws
kC−1

g cosα= ln (h/z0u) −A, kC−1
g sinα=−f hu−1

∗ B

and kT CT R= ln(h/z0u)−C, in which k, kT (∼0.4) are
the von Karman constants;z0u is the surface roughness;
Cg=u∗/G is the geostrophic drag coefficient (G is the
geostrophic wind speed);α is the cross isobaric angle;
CRT =θ∗/1θ=−Fθs/(u∗1θ) is the temperature resistance
coefficient; and1θ is the potential temperature increment
across the PBL (namely the difference between the potential
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Figure 2. Dimensionless CNPBL depth */|| uhf LES  versus imposed-stability parameter 
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Traditional formula ||/ fuCh RE ∗=  for the neutral PBL depth resulted in a wide spread of 
estimates of the empirical coefficient: 0.1 < RC < 0.7.  
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In Figure 3 theoretical curve is )ln(2.1 9.1
AA memA ++−= , with NAC =0.09; new LES are x, o 

and � for nocturnal, long-lived and CN PBLs; prior LES are ◊ (Brown et al., 1994) and 
(Kosovic and Curry, 2000). Error bars show ±3 standard deviation intervals for each LES run 
(96% statistical confidence). Semi-log coordinates better shows CN PBL regime.  

Fig. 2. Dimensionless CNPBL depth|f |hLES/u∗ versus imposed-
stability parameterµN=N/|f | after new LES. The theoretical line
is hE=

0.65u∗

|f |(1+0.2N/|f |)1/2 .
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temperature at the PBL upper boundary,θh−0 and the
so-called aerodynamic surface temperatureθ0. The inclusion
of the dependence onN andS resulted in essential collapse
of LES data on theA, B andC functions. In other words,
the above laws are now rehabilitated as a practical tool for
the PBL parameterisation.

According to Fig. 1, the empirical constants
are: CNM=0.06 and Cu=2; CNPBL mean pro-
files are: τ/u2

∗=(1−0.85z/h)3/2 for momentum flux;
∂u
∂z

=2.5u∗

z

(
1+0.85z

h

)3/2
+0.3N for the wind shear; and

u(z)=2.5u∗h
∫ z/h

z0u
(1−0.85ς)3/2 dς

ς
+0.3Nz for the wind

speed.
Traditional formulahE=CRu∗/|f | for the neutral PBL

depth resulted in a wide spread of estimates of the empiri-
cal coefficient: 0.1<CR<0.7.

In Fig. 3 theoretical curve isA=−1.2mA+ ln(e1.9
+mA),

with CNA=0.09; new LES are x, o and� for nocturnal, long-
lived and CN PBLs; prior LES are♦ (Brown et al., 1994)
and (Kosovic and Curry, 2000). Error bars show±3 standard
deviation intervals for each LES run (96% statistical confi-
dence). Semi-log coordinates better shows CN PBL regime.
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Figure 4. Cross-isobaric angle function 
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In Figure 4 the theoretical curve is 25.75.1 NBmB += , with NBC =0.13. 

 
Conclusions 

 
• Atmospheric PBLs in storms are not truly neutral (TN) but conventionally neutral (CN)  
 
• Proposed CNPBL model account for strong effects of free flow stability and baroclinicity 
 
• CNPBL depth is typically several times smaller than the TNPBL depth 

 
• Wind profile in the CNPBL is approximately log-linear rather than logarithmic 

 
•  The resistance-law coefficients A and B in the CNPBL depend on ||/ fNN =µ  

(especially important is the effect of Nµ on the cross-isobaric angle coefficient B) 
  

Fig. 4. Cross-isobaric angle functionB=k
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In Fig. 4 the theoretical curve isB=1.5+7.5m2
NB , with

CNB=0.13.

4 Conclusions

– Atmospheric PBLs in storms are not truly neutral (TN)
but conventionally neutral (CN)

– Proposed CNPBL model account for strong effects of
free flow stability and baroclinicity

– CNPBL depth is typically several times smaller than the
TNPBL depth

– Wind profile in the CNPBL is approximately log-linear
rather than logarithmic

– The resistance-law coefficientsA andB in the CNPBL
depend onµN=N/|f | (especially important is the ef-
fect ofµNon the cross-isobaric angle coefficientB)
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