Journal cover Journal topic
Advances in Geosciences An open-access journal for refereed proceedings and special publications
Journal topic

Journal metrics

Journal metrics

  • CiteScore value: 1.68 CiteScore
    1.68
  • SNIP value: 0.913 SNIP 0.913
  • SJR value: 0.651 SJR 0.651
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 34 Scimago H
    index 34
  • h5-index value: 13 h5-index 13
Volume 10
Adv. Geosci., 10, 17–23, 2007
https://doi.org/10.5194/adgeo-10-17-2007
© Author(s) 2007. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Adv. Geosci., 10, 17–23, 2007
https://doi.org/10.5194/adgeo-10-17-2007
© Author(s) 2007. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  26 Apr 2007

26 Apr 2007

Stord Orographic Precipitation Experiment (STOPEX): an overview of phase I

J. Reuder1, G. O. Fagerlid1, I. Barstad2, and A. Sandvik2 J. Reuder et al.
  • 1Geophysical Institute, University of Bergen, Norway
  • 2Bjerknes Centre for Climate Research, Bergen, Norway

Abstract. STOPEX (Stord Orographic Precipitation Experiment) is a research project of the Geophysical Institute, University of Bergen, Norway, dedicated to the investigation of orographic effects on fine scale precipitation patterns by a combination of numerical modelling and tailored measurement campaigns. Between 24 September and 16 November 2005 the first field campaign STOPEX I has been performed at and around the island of Stord at the west coast of Norway, about 50 km south of Bergen. 12 rain gauges and 3 autonomous weather stations have been installed to measure the variability of precipitation and the corresponding meteorological conditions. This paper gives an overview of the projects motivation, a description of the campaign and a presentation of the precipitation measurements performed. In addition, the extreme precipitation event around 14 November with precipitation amounts up to 240 mm in less than 24 h, is described and briefly discussed. In this context preliminary results of corresponding MM5 simulations are presented, that indicate the problems as well as potential improvement strategies with respect to modelling of fine scale orographic precipitation.

Download
Citation