Articles | Volume 5
https://doi.org/10.5194/adgeo-5-31-2005
https://doi.org/10.5194/adgeo-5-31-2005
16 Dec 2005
16 Dec 2005

Integration and calibration of a conceptual rainfall-runoff model in the framework of a decision support system for river basin management

J. Götzinger and A. Bárdossy

Abstract. Water balance models provide significant input to integrated models that are used to simulate river basin processes. However, one of the primary problems involves the coupling and simultaneous calibration of rainfall-runoff and groundwater models. This problem manifests itself through circular arguments - the hydrologic model is modified to calculate highly discretized groundwater recharge rates as input to the groundwater model which provides modeled base flow for the flood-routing module of the rainfall-runoff model. A possibility to overcome this problem using a modified version of the HBV Model is presented in this paper. Regionalisation and optimization methods lead to objective and efficient calibration despite large numbers of parameters. The representation of model parameters by transfer functions of catchment characteristics enables consistent parameter estimation. By establishing such relationships, models are calibrated for the parameters of the transfer functions instead of the model parameters themselves. Simulated annealing, using weighted Nash-Sutcliffe-coefficients of variable temporal aggregation, assists in efficient parameterisations. The simulations are compared to observed discharge and groundwater recharge modeled by the State Institute for Environmental Protection Baden-Württemberg using the model TRAIN-GWN.

Download