Journal cover Journal topic
Advances in Geosciences An open-access journal for refereed proceedings and special publications

Journal metrics

  • CiteScore<br/> value: 0.83 CiteScore
  • SNIP value: 0.527 SNIP 0.527
  • SJR value: 0.544 SJR 0.544
  • IPP value: 0.728 IPP 0.728
  • h5-index value: 13 h5-index 13
Adv. Geosci., 29, 13-20, 2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
25 Feb 2011
A staggered approach to flash flood forecasting – case study in the Cévennes region
L. Alfieri1, P. J. Smith2, J. Thielen-del Pozo1, and K. J. Beven2 1European Commission, Joint Research Centre, Ispra, Italy
2Lancaster University, Lancaster, UK
Abstract. A staggered approach to flash flood forecasting is developed within the IMPRINTS project (FP7-ENV-2008-1-226555). Instead of a single solution system, a chain of different models and input data is being proposed that act in sequence and provide decision makers with information of increasing accuracy in localization and magnitude as the events approach. The first system in the chain is developed by adapting methodologies of the European Flood Alert System (EFAS) to forecast flash floods and has the potential to provide early indication for probability of flash floods at the European scale. The last system in the chain is an adaptation of the data based mechanistic model (DBM) to probabilistic numerical weather predictions (NWP) and observed rainfall, with the capability to forecast river levels up to 12 h ahead. The potential of both systems to provide complementary information is illustrated for a flash flood event occurred on 2 November 2008 in the Cévennes region in France. Results show that the uncertainty in meteorological forecasts largely affects the outcomes. However, at an early stage, uncertain results are still valuable to decision makers, as they raise preparedness towards prompt actions to be taken.

Citation: Alfieri, L., Smith, P. J., Thielen-del Pozo, J., and Beven, K. J.: A staggered approach to flash flood forecasting – case study in the Cévennes region, Adv. Geosci., 29, 13-20, doi:10.5194/adgeo-29-13-2011, 2011.