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Abstract. Water vapor budget (WVB) analysis is a power-
ful tool for studying processes leading to precipitation (P),
since the linkages among atmospheric dynamics, water va-
por fields, surface conditions, and P are constrained by the
moisture continuity equation. This paper compares WVB
calculations over the US Midwest (MW), the US South-
ern Great Plains (SGP), and the eastern Mediterranean Sea
(EM) during their seasons of maximum P. Despite the inter-
regional differences in time of year, size of region, and sur-
face characteristics, the WVBs over these regions have com-
mon features. First, the change in precipitable water (dPW)
is highly correlated with the moisture flux divergence (MFD)
and not evaporation (E), implying that atmospheric humid-
ity is affected more by the large-scale atmospheric circula-
tion than land-atmosphere interactions. Second, P is posi-
tively correlated with moisture inflow (IF/A). However, a
pronounced difference exists between the North American
and the Mediterranean study regions with respect to the pro-
cesses associated with increased P. For the MW and the SGP,
increased P is associated with moisture flux convergence
(−MFD) due to increased IF/A. In contrast, increased P over
the EM is not associated with−MFD, since both the outflow
(OF/A) and IF/A increase at similar rates.

Recycling ratio (R) estimates were calculated for each re-
gion using an equation previously developed. The moisture
recycling methodology involves the externally advected ver-
sus locally evaporated contributions to P being expressed
in terms of a “bulk” formulation in which IF/A and OF/A
are defined at the boundaries of the study area. Due to its
scale dependence,R cannot be directly compared among the
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different regions, and a normalization procedure was devel-
oped for this comparative study. Its results suggest the nor-
malizedR ranges between 12-25% for the study regions,
with the value for the oceanic EM being somewhat larger
than over the continental MW and SGP.

1 Introduction

The generation of precipitation is a function of atmospheric
processes and land/ocean surface characteristics, especially
the degree to which they simultaneously are favorable. Many
studies have addressed the large-scale circulation patterns
and conditions that are conducive for generating precipita-
tion (e.g., for the US: Lanzante and Harnack, 1982; Klein
and Bloom, 1987; Peppler and Lamb, 1989; and for the
Mediterranean region: Aelion, 1958; Ozsoy, 1981; Zangvil
and Druian, 1990; Zangvil et al., 2003; Malka, 2006). From
another perspective, the linkages among atmospheric dynam-
ics, the atmospheric water vapor field, the land/ocean surface
conditions, and precipitation are constrained by the moisture
continuity equation, which contains two basic ingredients for
precipitation – large-scale vertical motion and humidity. This
makes water vapor budget (WVB) analysis an attractive tool
for investigating the processes leading to precipitation. Many
such studies have been published for diverse areas (e.g., Ras-
musson, 1967, 1968; Yanai et al., 1973; Roads et al., 1994;
Higgins et al., 1996; Mo and Higgins, 1996; Berbery and
Rasmusson, 1999; Ruppecht and Kahl, 2003).

Early 2000 studies for WVB were published concerning
Midwestern US (Zangvil et al., 2001, 2004). More recently,
work was started on the WVB concerning the US South-
ern Great Plains as part of the “Cloud and Land Surface
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Interaction Campaign” (CLASIC), under the Atmospheric
Radiation Measurement (ARM) Program. ARM is a large
US Global Change research program supported by the US
Department of Energy. Preliminary results have been re-
ported by Lamb et al. (2008a, b; 2009). Over the eastern
Mediterranean, only a few studies have examined the water
vapor field (e.g., Zangvil and Druian, 1990; Alpert and Shay-
El, 1994; and Mariotti et al., 2002). Recently, Jin (2005),
Malka (2006) and Jin and Zangvil (2009) performed WVB
studies in relation to precipitation processes for several east-
ern Mediterranean regions, using reanalysis data.

The present study compares the results of WVB analy-
ses for the above domains (Midwestern US, US Southern
Great Plains, and eastern Mediterranean) concerning only
their main precipitation seasons, in order to improve the un-
derstanding of precipitation generation processes. A related
group of earlier studies assessed the relative contribution to
regional precipitation of locally evaporated versus externally
advected moisture, also termed “recycling” or the recycling
ratio (e.g., Benton et al., 1950; Budyko, 1974; Brubaker et
al., 1993; Burde et al., 1996; and Zangvil et al., 2004). To
facilitate the inter-regional comparison, a recycling ratio nor-
malization procedure was developed in order to account for
the effects of the regions’ different spatial scales. The recy-
cling ratio normalization procedure was then applied to the
study domains of the present study.

2 Theory, data and methods

2.1 Moisture budget equation

Following Yanai et al. (1973), the traditional WVB equation
may be expressed in the following form:
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Where,q is specific humidity,p is atmospheric pressure,
V is the horizontal wind vector,g is the acceleration due
to gravity, S andT indicate the land/ocean surface and an
upper integration limit, respectively, E is the surface evap-
oration rate, P is precipitation, dPW is the time change of
atmospheric water vapor (precipitable water, PW), and MFD
is the horizontal moisture flux divergence.

By applying Green’s Theorem to the MFD term in Eq. (1),
Zangvil et al. (2004) obtained
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whereA is the area of the region,vn is the wind compo-
nent normal to the region’s boundary,dl is a length incre-
ment along that boundary, and OF/A and IF/A are the total

water vapor outflow from and inflow into the region, respec-
tively. The line integral Eq. (2) is evaluated along the region’s
boundary using the vertically integrated water vapor flux and
yields the total regional OF/A and IF/A. Substituting Eq. (2)
into Eq. (1) yields

E − P=
OF

A
−

IF

A
+ dPW, (3)

which is illustrated in Fig. 1d. To quantify the advected
(IF/A) and locally evaporated (E) origins of P, Zangvil et al.
(1992, 2004) derived the recycling formula

R =
PE

P
=

E

E +
IF
A

, (4)

where, PE is the amount of P originating from local E.

2.2 Scale dependence of IF/A and R

Although none of the water vapor budget components is ex-
plicitly scale-dependent in Eq. (1), it is highly conceivable
that scale dependence characterizes the WVB. P and MFD,
and to a lesser extent E and dPW, are area dependent, since
the P patterns are synoptically driven, at least in part. Gen-
erally, it was expected that the temporal variability of these
components was larger/diminished in small/expanded areas.
Also, there is scale dependence in IF/A, OF/A, and the de-
rived R that is explicit inA and implicit in the closed line
integral in Eq. (2). Since most of the study regions used in
WVB research are nearly square-shaped, consider a square
region with an areaA and sideL. For simplicity, assume the
flow to be perpendicular to one pair (zonal or meridional) of
the sides of the regions and that the only contribution to the
inflow comes from the up-wind side, which reduces Eq. (2)
to

1
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A
. (5)

Denoting the vertically integrated moisture flux byqv,
Eq. (5) may be rewritten as

1
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qvL =

IF
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(6)

or,

IF

A
=

qv

gL
. (6a)

Thus, due to the scale dependence, it is impossible to make
meaningful comparisons of IF/A andR between regions of
different sizes. This problem can be overcome by the nor-
malization described next.
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Fig. 1. Orientation map. Delineated approximately rectangular regions formed the bases of 
atmospheric volumes illustrated in (d) for which moisture budget components were estimated. 
(a) Eastern Mediterranean (EM), (b) U.S. Midwest (MW) and Southern Great Plains (SGP), (c) 
coastal (EM1) and inland (EM2) eastern Mediterranean regions, (d) WVB components 
symbols for atmospheric volume as in (3). 
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Fig. 1. Orientation map. Delineated approximately rectangular regions formed the bases of atmospheric volumes illustrated in (d) for which
moisture budget components were estimated.(a) Eastern Mediterranean (EM),(b) US Midwest (MW) and Southern Great Plains (SGP),(c)
coastal (EM1) and inland (EM2) eastern Mediterranean regions,(d) WVB components symbols for atmospheric volume as in Eq. (3).

2.3 Normalization of inflow (IF/A)

Equation (6a) may be applied to any virtual square region of
arbitrary sideL0 and arbitrary areaA0, to give(

IF

A

)
0

=
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gL0
. (6b)

Finally, Eq. (6a) and Eq. (6b) are resulting in(
IF
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0
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(7)

Equation (7) may be used to transform the measured verti-
cally integrated moisture flux into regionA to the flux into
an arbitrary areaA0. This procedure was applied to pro-
duce normalized values of the inflow values (IF/A)0 using the
normalization factorL/L0 (Table 1) for each of the regions
used here (Fig. 1a-c) Midwestern US (MW), US Southern
Great Plains (SGP), eastern Mediterranean (EM), (EM1) and
(EM2). The arbitrary normalization area was chosen to be

Table 1. Area and normalization information for study regions
named in Sect. 2.3 and delineated in Fig. 1. The normalization area
A0 used (0.7×106 km2) was close to the mean of the North Amer-
ican regions and the eastern Mediterranean regions to which it was
applied. The normalization factorL/L0 was obtained as

√
A/

√
A0

whereA is the area of each region. See Sect. 2.3 for underlying
theory.

Region Area (km2) Normalization
FactorL/L0

MW 1.23×106 1.326
SGP 0.83×106 1.089
EM 0.304×106 0.659
EM1 0.31×106 0.665
EM2 0.31×106 0.665
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Table 2. Mean WVB components andR values for the MW, SGP, and EM regions delineated in Fig. 1a and b. Symbols are as in the text.
IF/A andR values are presented in original and normalized forms (see Sect. 2.3). NormalizedR values were computed using Eq. (4) with
normalized IF/A values given by Eq. (7). Small P in the MW and SGP refers to P≤0.6 mm d−1, and large P there is for 4<P≤8 mm d−1.
For the EM, these ranges are 0.01≤P≤0.15 and 0.9≤P≤2.2 mm d−1, respectively. Units are mm d−1, except for PW (mm) andR (%).

Region P E MFD IF/A IF/A dPW PW R(%) R(%)
P-Category Original Normalized (mm) Original Normalized

MW (Small P) 0.2 4.8 3.4 11.9 15.8 1.2 23.1 29 23
MW (Large P) 5.7 3.8 −0.6 22.0 29.2 −1.3 32.4 15 12
SGP (Small P) 0.2 3.5 1.9 16.0 17.4 1.2 29.1 18 17
SGP (Large P) 5.7 3.7 −2.4 20.5 22.3 0.2 37.6 15 14
EM (Small P) 0.1 3.2 2.7 14.8 9.8 0.6 13.4 18 25
EM (Large P) 1.5 4.1 3.9 22.2 18.8 −0.6 15.7 16 18

0.7×106 km2 which is close to the mean of the central North
American and eastern Mediterranean regions.

2.4 Data and analysis

For the MW study (Fig. 1b), radiosonde data (from the
US National Weather Service and the Canadian Atmo-
spheric Environment Service) and raingauge measurements
at 600 locations were used for the May–August periods
of 1975, 1976, 1979, and 1988, with a combined total of
488 days (see Zangvil et al., 2001, 2004 for a descrip-
tion of datasets and methodology). For the SGP study
(Fig. 1b), the NCEP North American Regional Reanalysis
(NARR; Mesinger et al., 2006) dataset and the NCEP daily
gridded precipitation analysis from the NCEP Climate Pre-
diction Center (ftp://ftp.cpc.ncep.noaa.gov/precip/wd52ws/
us daily/) were used for the May–June periods in 2006 and
2007, with a combined total of 120 days. For the EM (Jin
and Zangvil, 2009) and EM1/EM2 (Malka, 2006) studies
(Fig. 1a and c), NASA/DAO reanalysis data (including P and
E values; see Schubert et al., 1993 for a description of the
NASA/DAO reanalysis) were used for eight consecutive win-
ters (October–April) between 1985–1993, with a combined
total of 1698 days. In both North American studies, surface
E was obtained as the residual of Eq. (1).

In the MW, SGP, and EM studies, the WVB compo-
nents were stratified by precipitation (P) amounts. For
the MW and SGP, whereP was not model-derived, the
P categories were: P<0.6; 0.6<P<2; 2<P<4; 4<P<8;
and 8<P mm d−1. In the EM study, whereP was model-
derived, theP categories were: 0.01<P<0.15; 0.15<P<0.4;
0.4<P<0.9; 0.9<P<2.2; and 2.2<P mm d−1. The magni-
tude of these modeledP data was lower by a factor of∼2
than P estimates over the EM. All above P categories were
chosen so that an approximately equal number of P days
would finally belong to each category. For the study regions
EM1 and EM2, auxiliary raingauge data were used to deter-
mine major rain days in Israel. A major rain day (MRD) at a

given station had a P amount of at least 10% of the long-term
monthly mean P at that station (Zangvil and Druian, 1990).

3 Results and discussion

Since previous publications contain detailed presentations
and discussions of the results for the above study regions,
the effort of the present study is to focus on the important
inter-regional similarities and differences and their physical
implications. Relations between the WVB components are
identified through stratification by P amount, linear correla-
tion analysis, and use of the recycling ratioR. Finally, a
discussion of the synoptic aspects provides physical insight
into the WVB differences between our study regions.

3.1 Stratification of WVB

Mean WVB component values for the MW, SGP, and EM re-
gions are presented in Table 2 for “small” and “large” P cat-
egories. Over the MW and SGP, the MFD decreases as P in-
creases and becomes negative (convergent) for largeP . This
is in pronounced contrast to the situation in the EM, where
the positive mean MFD for small P increases further for
large P. From Table 2 it is apparent that the original IF/A val-
ues for each P category are of similar magnitude in the three
regions, but for the EM the normalized IF/A is considerably
lower than that for North America. This result is consistent
with the lower winter PW in the EM, compared to the high
summer PW in North America. Another interesting find-
ing involves the behavior of dPW in the three regions. For
small P some moisture storage occurs in all regions, while
for large P there is moisture depletion in the MW and EM
and small storage for the SGP.

Table 3 gives mean values of the WVB components for the
EM1 and EM2 regions associated with MRDs in Israel de-
termined by the procedure outlined in Sect. 2.4. This P strat-
ification essentially corresponds to the “Large P” category
shown in Table 2. The WVB component for the maritime
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Table 3. Mean WVB components andR values for the EM1 and EM2 regions delineated in Fig. 1c for 480 major rain days (MRDs) in Israel
(defined in Sect. 2.4) during the winters of 1985–1993, based on Malka (2006). Symbols are as in the text. IF/A andR values are presented
in original and normalized forms (see Sect. 2.3).

Region P E MFD IF/A IF/A dPW R(%) R(%)
Original Normalized Original Normalized

EM1 2.4 4.4 4.4 25.8 17.2 −0.8 15 20
EM2 1.9 2.1 0 29.5 19.6 −0.5 7 10

Table 4. Linear correlation coefficients between WVB components for the MW, SGP, and EM regions. Using a 2-tailed t test that accounted
for non-independence of the data (see Zangvil et al., 2001; Jin and Zangvil, 2009), the 95% (99%) confidence levels for each region are –
MW: 0.18 (0.23); SGP: 0.36 (0.46); EM: 0.11 (0.15).

Region P & MFD P & IF/A P & PW P & E E & OF/A MFD & dPW

MW −0.40 +0.58 +0.42 +0.06 +0.14 −0.68
SGP −0.68 +0.31 +0.68 +0.23 +0.21 −0.60
EM −0.08 +0.45 +0.21 +0.36 +0.35 −0.61

EM1 region, which partly overlaps EM, shows a behavior
similar to that of the large P in the EM. In EM2, MFD drops
to zero, presumably because of intensified IF/A downwind of
EM1.

3.2 Correlation between WVB components

For the MW, SGP, and EM regions, the linear correlation co-
efficients were calculated between all WVB components. Ta-
ble 4 presents the key correlation values obtained along with
information on their statistical significance based on Zangvil
et al. (2001) and Jin and Zangvil (2009). There is a strik-
ing similarity between most of the correlations for the two
US regions. For both the MW and SGP, there are moderate-
to-strong correlations (magnitudes of 0.31 to 0.68) between
P and MFD, P and IF/A and P and dPW. The correlation be-
tween P and E is near zero for the MW and only +0.23 over
the SGP. For the EM the correlation between P and MFD
also is near zero, while larger correlations occur between P
and E (+0.36) and P and IF/A (+0.45). The +0.36 correla-
tion between P and E in the EM emphasizes the important
role of water vapor originating in the EM for P in that re-
gion. Also, there are strong negative correlations between
MFD and dPW in all three regions (−0.60 to−0.68), indi-
cating that the change in atmospheric water vapor storage is
affected strongly by the large scale MFD, whereas the cor-
relations of E with dPW are very low (not shown). Finally,
there is a good correlation between E and OF/A for the EM,
but not for MW and SGP (see Sect. 4).

3.3 Recycling

The results also shed further light on the relative importance
for P of local E versus externally advected moisture. On one
hand, the correlation results in Table 4 clearly emphasize the
much stronger overall association of P with other WVB com-
ponents when the datasets were analyzed in their entirety.
However, this bulk approach obscures key information that
emerges through the application of the above normalization
(for IF/A andR) and stratification (by P) procedures. Be-
fore the IF/A normalization,R did not differ considerably
between regions except for MW for small P (Tables 2 and
3). The prominent characteristic of the normalizedR values
is the relatively largeR in the EM for both small and large
P amounts compared to both the MW and SGP (Table 2).
This means that locally evaporated EM sea water constitutes
a significant fraction of this region’s P. Note also thatR in
EM2 is smaller by a factor of 2 thanR in EM1 (Table 3).
This result is consistent with the significantly lower E over
the EM2 land area.

3.4 Synoptic controls

From the synoptic point of view, the different behavior of
the WVB components between the study regions may be ex-
plained in part by the location of maximum P with respect to
the mid-upper tropospheric trough. In the Central US, spring
and summer precipitation occur when moist southerly flow
from the Gulf of Mexico prevails to the east of the surface
low (see Fig. 2 based on Holton, 1972, Fig. 7.10). In contrast,
in the EM2 region the southerly flow ahead of the surface low
is very dry, and as a result most of the rainfall takes place near
or behind the surface cold front in proximity to the upper air
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Fig. 2. Schematic presentation of a typical synoptic situation leading to precipitation in the 
MW and SGP. Solid lines represent 500hPa geopotential height and dashed lines represent 
surface pressure. Stippling denotes areas of precipitation and w indicates vertical velocity 
(positive upward).  Based on Fig. 7.10 in Holton (1972).  
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Fig. 2. Schematic presentation of a typical synoptic situation lead-
ing to precipitation in the MW and SGP. Solid lines represent
500 hPa geopotential height and dashed lines represent surface pres-
sure. Stippling denotes areas of precipitation andw indicates verti-
cal velocity (positive upward). Based on Fig. 7.10 in Holton (1972).

trough line (Fig. 3), as described in Aelion (1958), Zangvil
et al. (2003), and Malka (2006). In the EM region, maximum
P occurs further west, between the upper air trough line and
the surface low, known as the Cyprus Low (see Fig. 7; in Jin
and Zangvil, 2009). A possible explanation for the positive
MFD associated with large P in the EM (Tables 2 and 3), the
OF/A from the region is larger than the IF/A – lies in the E
from the eastern Mediterranean Sea. This E may contribute
to an increased OF/A resulting in a positive MFD. The high
correlation between E and OF/A supports this interpretation
(Table 4).

4 Summary and conclusions

Separate atmospheric water vapor budget (WVB) analyses
were conducted for the: (1) Midwestern US (MW); (2) the
Southern Great Plains in the south central US (SGP); and
(3) the eastern Mediterranean Sea (EM) and two additional
areas (EM1 and EM2), the latter being a coastal region.
These analyses identified the following large-scale dynam-
ical and WVB-related processes associated with precipita-
tion (P) in the study regions:

1. For the MW and SGP, the processes associated with in-
creased P include a gradual decrease in moisture flux
divergence (MFD), through increased moisture inflow
(IF/A), reaching negative values of MFD (convergence).

2. Over the EM, increased P is not related to decreased
MFD, since both IF/A and moisture outflow (OF/A) in-
crease at similar rates. However, there is an increase in
E with P, which supports the increased OF/A. Hence,
the role of E as a source of moisture, or trigger, for P in
the EM may be more important for the eastern Mediter-
ranean Sea than in the terrestrial central US.

3. A normalization procedure was developed to allow
meaningful comparison of the scale-dependent IF/A

 
Fig. 3.  Same as Fig. 2, but for the eastern Mediterranean.  
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Fig. 3. Same as Fig. 2, but for the eastern Mediterranean.

andR obtained in studies of different horizontal scales.
Consistent with the possibility raised in 2 above, the
normalizedR for the EM is larger than those for the
MW and SGP. With movement eastwards from EM1
(sea surface) to EM2 (land), there is a drop in the nor-
malizedR from 20% in the maritime region to 10%, in
the continental region.

4. The major atmospheric agent changing the large-scale
atmospheric humidity over the MW, SGP, and EM was
shown to be the MFD.

5. From the synoptic point of view, P in the central US was
suggested to be associated with moist southerly flow
from the Gulf of Mexico advected northwards to the east
of a surface low pressure system. For the arid continen-
tal EM2 region, the southerly flow ahead of the surface
low is very dry, and as a result most P occurs near or
behind the surface cold front in proximity to the upper
trough line. Over the EM, the location of the rainfall is
between the surface low and the mid-tropospheric upper
air trough line.
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