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Abstract. The 3-dimensional structure and the evolution of
atmospheric circulation favoring snowfall in Athens are ex-
amined. The study refers to 61 snow events, which occurred
during the period 1958–2001. For each one of the events, the
patterns of MSL pressure, 850 hPa and 500 hPa air tempera-
tures, 500 hPa geopotential height and 1000–500 hPa thick-
ness are constructed for the European region, for the day
before (D-1), the first day (D) and the day after the end of
the event (END). A statistical methodology involving Factor
Analysis and Cluster Analysis is applied to the above data
sets and the 61 cases are finally classified into five clusters.
These clusters are generally characterized by a north-easterly
flow in the lower troposphere over the Athens area. This
flow is associated with the presence of a low pressure system
around Cyprus and an anticyclone over Europe. The posi-
tion, the intensity and the trajectories of the surface and the
upper air systems during D-1, D and END days are generally
different among the five clusters.

1 Introduction

Scientific research in meteorological forecasting during the
last decades has mainly focused on the construction and
the improvement of numerical models for weather predic-
tion. These models aim at the prediction of the oncoming
weather and the possible occurrence of extreme meteorolog-
ical events that may cause inconvenience in human activi-
ties (e.g. Keller, 2002; Hervella et al., 2003). On the other
hand, some researchers have examined the connection be-
tween extreme meteorological events and atmospheric circu-
lation by using statistical methodologies (e.g. Metaxas et al.,
1993; Romero et al., 1998; Jansa et al., 2001; Kutiel et al.,
2001; Kostopoulou and Jones, 2005). In many regions of the
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Mediterranean basin, snowfall can be considered as an ex-
treme event and it is responsible for significant problems in
transportation, cutback on industrial and trade activity, dam-
ages to the power supply network and sometimes fatal acci-
dents. The synoptic conditions associated with snowfall in
various Mediterranean regions, including Athens, have been
studied in the past, by using various approaches (e.g. Prez-
erakos and Angouridakis, 1984; Tayanc et al., 1998; Este-
ban et al., 2005). In the present study, the issue of snow-
fall in Athens is approached by introducing a new objective
methodology scheme, in order to identify not only the main
circulation patterns associated with the event, but also the de-
tails referring to the position, the intensity and the evolution
of the associated circulation systems from the day before the
beginning till the day after the end of the event.

2 Data and methodology

The data used consists of: i) 3-hourly meteorological obser-
vations recorded at the meteorological station of Hellenikon
airport (Athens area), provided by the Hellenic National Me-
teorological Service and ii) 12:00 UTC 2.5×2.5 grid point
data of MSL pressure, 850 hPa and 500 hPa air tempera-
tures, 500 hPa geopotential height and 1000–500 hPa thick-
ness over Europe (10◦ W–40◦ E and 30◦–60◦ N) for the pe-
riod 1958–2001, obtained from the ECMWF ERA40 Reanal-
ysis Project. When at least one, of the 3-hourly observations
in a day reports snowfall, this day is considered as a snow
day. The sequence of successive snow days is then consid-
ered as a snow event. The first day of a snow event will be
mentioned as D day, the day before D day as D–1 day and
the day that follows the last day as END day. By analyzing
the dataset, 61 snow events are extracted. Three matrices are
constructed (one for each of D-1, D and END days), con-
taining the grid point values of MSL pressure, 850 hPa and
500 hPa air temperatures, 500 hPa geopotential height and
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Fig. 1. Distribution of snow events according to their duration. 3
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Figure 1 Distribution of snow events according 
to their duration. 
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Figure 2 Number of snow days and duration of 
snow events per month. 
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Figure 3 Number and duration of snow events per winter (November – March). 

 

3.2. Classification of snow events  

The 61 snow events are classified into 5 clusters. The monthly distribution of the snow 
events classified in the 5 clusters (Fig. 4a) shows, that clusters 1, 2 and 5 can be 
characterized as late winter clusters, as they mainly appear from January to March. On the 
other hand, clusters 3 and 4 appear mainly during the conventional winter (December – 
February). According to the duration of snow events of each cluster (Fig. 4b), it is shown 
that the events classified in clusters 3, 4 and 5 appear to last longer than these of clusters 1 
and 2. By examining the inter-annual variation of the events of each cluster (Fig. 4c), it is 
shown that the events of cluster 1 appear frequently during the whole under study period, 
but especially during the period 1971-1975. The events of cluster 3 appear relatively 
frequently before 1981, but they do not appear at all since 1981, except from the winter of 
1991-1992, which is the snowiest winter of the whole period. Also, the events of cluster 5 
appear frequently before 1977, but since 1977, they appear only during the winters of 
1987-1988 and 1991-1992. Finally, the events of cluster 4 seem to be evenly distributed 
in the under study period. 

Fig. 2. Number of snow days and duration of snow events per
month.

1000–500 hPa thickness, for the 61 snow events. Thus, each
one of the three matrices consists of 61 rows corresponding
to the snow events and 1365 columns corresponding to the
273 grid point values of the 5 parameters.

At first, Factor Analysis(FA) (Jolliffe, 1986; Manly, 1986)
is applied to each one of the three matrices in order to reduce
their dimensionality. 11 factors are retained for each case, ac-
counting for at least 85% of the total variance. By unifying
the resulted 61×11 matrices, a new 61×33 matrix is con-
structed. Each row represents the evolution (D-1, D, END
days) of the 3-dimensional atmospheric structure associated
with the corresponding snow event. Then,K-Means Clus-
ter Analysis(CA) (Manly, 1986; Sharma, 1996) is applied to
the above 61×33 matrix, classifying the 61 cases into 5 dis-
tinct clusters. The number of clusters is selected by testing
an hierarchical cluster analysis using Ward’s method in order
to obtain a general view of the clustering step by step in the
corresponding dendrogram. Also, a technique introduced by
Sugar and James (2003), based on distortion, a quantity that
measures the average distance between each observation and
its closest cluster center, is applied confirming our selection.
We note, that our purpose is to identify not only the general
characteristics of the synoptic conditions favoring snowfall
in Athens, but also the details referring to the position, the
intensity and the trajectories of the associated circulation sys-
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Fig. 3. Number and duration of snow events per winter (November–
March).

tems. For each of the 5 clusters revealed, the mean patterns
of the meteorological parameters are constructed for D-1, D
and END days, describing the specific evolution of the atmo-
spheric structure, associated with a snow event in Athens.

3 Results

3.1 General characteristics of snow events

More than 50% of snow events that occurred in Athens dur-
ing the period 1958–2001 lasted for 1 day, while only once
did the event last for 4 days (Fig. 1). Only one snow event
occurred in November while the others occurred during the
months December, January, February and March (Fig. 2).
Before 1982, it snowed almost every year, but the yearly fre-
quency and duration of the events were low and short respec-
tively. Since 1982, it does not generally snow every year,
but the yearly frequency and duration are higher and longer
respectively, especially during the winters of 1982–1983,
1986–1987 and 1991–1992 (Fig. 3). It is noted, that the var-
ious climate change models predict a general increase in the
frequency and the intensity of the extreme weather events.
However, a possible association between climate change and
the snowfall change in Athens during the recent decades has
to be further investigated.

3.2 Classification of snow events

The 61 snow events are classified into 5 clusters. The
monthly distribution of these snow events classified in the
5 clusters (Fig. 4a) shows, that clusters 1, 2 and 5 can be
characterized as late winter clusters, as they mainly appear
from January to March. On the other hand, clusters 3 and
4 appear mainly during the conventional winter (December–
February). According to the duration of snow events of each
cluster (Fig. 4b), it is shown that the events classified in clus-
ters 3, 4 and 5 appear to last longer than these of clusters 1
and 2. By examining the inter-annual variation of the events
of each cluster (Fig. 4c), it is shown that the events of clus-
ter 1 appear frequently during the whole under study period,
but especially during the period 1971–1975. The events of
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Figure 4 (a) Monthly distribution, (b) duration and (c) inter-annual variation of snow events for the 5 
clusters. 
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Figure 5 The number of snow events versus the first hour of their report for each cluster. 

Fig. 4. (a)Monthly distribution,(b) duration and(c) inter-annual variation of snow events for the 5 clusters.

cluster 3 appear relatively frequently before 1981, but they
do not appear at all since 1981, except from the winter of
1991–1992, which is the snowiest winter of the whole pe-
riod. Also, the events of cluster 5 appear frequently before
1977, but since 1977, they appear only during the winters of
1987–1988 and 1991–1992. Finally, the events of cluster 4
seem to be evenly distributed in the under study period.

In order to examine the time of the initiation of the events,
the number of snow events versus the first hour of their re-
port is plotted (Fig. 5). It is shown, that the initiation of the
events generally appears to occur in the morning. For a sta-
tistical confirmation of this finding, Chi-square test is applied
in order to examine whether the diurnal distributions of the
initiation hour differ significantly from the uniform one. It
is found, that this is valid only for cluster 1 and the total
number of the events (95% confidence level). This morning
maximum may be connected to the fact that, in the morn-
ing, air temperature is lowest and relative humidity is high-
est, favoring increased condensation. It has to be mentioned
that the maximum in diurnal variation of winter precipitation
and cloudiness in Athens occurs in the morning also (Kara-
piperis, 1963; Metaxas, 1970; Catsoulis et al., 1976).

For each one of the 5 clusters, the mean patterns of MSL
pressure (hPa), 850 hPa air temperature (◦C), 500 hPa air
temperature (◦C), 1000–500 hPa thickness (m) and 500 hPa
geopotential height (m) for D-1, D and END days are pre-
sented in Figs. 6, 7, 8, 9, 10.
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Figure 4 (a) Monthly distribution, (b) duration and (c) inter-annual variation of snow events for the 5 
clusters. 
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Figure 5 The number of snow events versus the first hour of their report for each cluster. 

Fig. 5. The number of snow events versus the first hour of their
report for each cluster.

Cluster 1 (Fig. 6): During D-1 day, an upper air trough
is shown over the eastern Balkans and the Black Sea and
a ridge is shown over the western Europe. At the surface,
the low pressure center is located over Cyprus and the an-
ticyclone is located over central Europe (depressions tilt to-
wards low temperatures and anticyclones tilt towards high
temperatures). The combination between the two systems
induces a cold advection over the eastern Balkans, in the
middle and the lower troposphere. On D day, the upper
air trough moves over the eastern Aegean, the anticyclone
moves over the northwestern Balkans and the north-easterly
flow is enhanced, leading to a strong cold invasion over
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Figure 6 Mean patterns of MSL pressure (hPa), 850hPa air temperature (oC), 500hPa air 
temperature (oC), 1000 – 500hPa thickness (m) and 500hPa geopotential height (m) for D-1, D and 
END days, for cluster 1 (18 snowfall events). 
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geopotential height (m) for D-1, D and END days are presented in Fig. 6, 7, 8, 9, 10. 
Cluster 1 (Fig. 6): During D-1 day, an upper air trough is shown over the eastern Balkans 
and the Black Sea and a ridge is shown over the western Europe. At the surface, the low 
pressure center is located over Cyprus and the anticyclone is located over central Europe 
(depressions tilt towards low temperatures and anticyclones tilt towards high 
temperatures). The combination between the two systems induces a cold advection over 
the eastern Balkans, in the middle and the lower troposphere. On D day, the upper air 
trough moves over the eastern Aegean, the anticyclone moves over the northwestern 
Balkans and the north-easterly flow is enhanced, leading to a strong cold invasion over 
Athens, associated with a temperature decrease of about 4C at 850hPa level. On END 
day, the upper air trough and the surface low move eastwards and the surface flow is 
weakened. 

Fig. 6. Mean patterns of MSL pressure (hPa), 850 hPa air temperature (◦C), 500 hPa air temperature (◦C), 1000–500 hPa thickness (m) and
500 hPa geopotential height (m) for D-1, D and END days, for cluster 1 (18 snowfall events).

Athens, associated with a temperature decrease of about 4◦C
at 850 hPa level. On END day, the upper air trough and the
surface low move eastwards and the surface flow is weak-
ened.

Cluster 2 (Fig. 7): This is the most infrequent cluster,
as it comprises only 3 late winter days. During D-1 day,
an upper air trough affects Italy, the Adriatic Sea and the
northern Balkans and it is associated with a strong north-
easterly flow in the lower troposphere over these areas. On
D day, the whole system and the associated cold upper air
mass move over the eastern Balkans and the Aegean, where
the very strong northerly flow is responsible for the advec-
tion of very cold air masses in the lower troposphere. This
flow is attributed to the combination between an anticyclone
over France and a very deep depression over Cyprus. The D

day of this cluster is characterized by the lowest air tempera-
tures over Athens among the five clusters (500 hPa:−33◦C,
850 hPa:−9◦C, 1000–500 hPa thickness: 5080 m), as well
as by the deepest Cyprus depression (below 1000 hPa). On
END day, the trough and the associated cold mass move over
Asia Minor and the Black Sea, while anticyclonic conditions
prevail over Greece.

Cluster 3 (Fig. 8): During D-1 day, an upper air trough and
a cold air mass are shown over the Balkans, while a combi-
nation between an anticyclone over central Europe and a de-
pression between Crete and Cyprus in the lower troposphere
is responsible for a north-easterly flow over the same area.
During D day, an upper low is formed over the Aegean and
west Asia Minor, while the surface anticyclone and the de-
pression move over the northern Balkans and the Cyprus area
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Figure 7 As in Fig. 6, but for cluster 2 (3 snow events). 
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Black Sea, while anticyclonic conditions prevail over Greece. 
 

Fig. 7. As in Fig. 6, but for cluster 2 (3 snow events).

respectively causing a very strong north-easterly flow over
Greece. On END day, the cold air mass becomes warmer and
moves eastwards along with the associated upper air trough
and the surface low.

Cluster 4 (Fig. 9): On D-1 day, an upper air trough ap-
pears over the northern Balkans, an anticyclone is centered
over western Europe and a low pressure system is centered
over the area between Crete and Cyprus. During D day,
the upper air trough moves over the Aegean, the anticyclone
moves eastwards over central Europe and the north-easterly
flow over Athens is intensified, transferring cold air masses.
This cluster presents the highest temperature in the lower tro-
posphere over Athens, during D day, among all the clusters
(850 hPa:−6◦C, 1000–500 hPa thickness: 5170 m). During
END day, the surface and upper air systems and the north-
easterly flow are weakened.

Cluster 5 (Fig. 10): During D-1 and D days, a 500 hPa
trough and a cold air mass exist over the Balkans, while
a north-easterly flow, associated with an anticyclone over
central Europe and a depression between Crete and Cyprus,
prevails over the Aegean and the Athens region. On END
day, an upper low is formed over the north-eastern Balkans,
while the high pressure gradient area in the lower troposphere
moves eastwards affecting north-west Asia Minor. This clus-
ter prevails mainly in late winter.

Despite the fact that the D day synoptic conditions of the
five clusters seem to be quite similar to each other, it has to be
mentioned that each cluster is not characterized by the pat-
terns of D day only, but also by these of D-1 and END days.
This means, that each cluster is described by the whole set of
15 patterns corresponding to the five meteorological param-
eters of the three days. Thus, the individual characteristics
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Figure 8 As in Fig. 6 but for cluster 3 (10 snow events). 

 
Cluster 3 (Fig. 8): During D-1 day, an upper air trough and a cold air mass are shown over 
the Balkans, while a combination between an anticyclone over central Europe and a 
depression between Crete and Cyprus in the lower troposphere is responsible for a north-
easterly flow over the same area. During D day, an upper low is formed over the Aegean 
and west Asia Minor, while the surface anticyclone and the depression move over the 
northern Balkans and the Cyprus area respectively causing a very strong north-easterly 
flow over Greece. On END day, the cold air mass becomes warmer and moves eastwards 
along with the associated upper air trough and the surface low. 
 

Fig. 8. As in Fig. 6 but for cluster 3 (10 snow events).

Table 1. Average D day values for specific meteorological characteristics of the 5 clusters.

Cluster 500 hPa Temperature 850 hPa Temperature 1000–500 hPa Thickness Anticyclone center Depression center
over Athens (C) over Athens (C) over Athens (m) SLP (hPa) SLP (hPa)

1 −29 −8 5160 >1028 <1012
2 −33 −9 5080 >1028 <1000
3 −29 −7 5160 >1028 <1010
4 −29 −6 5170 >1030 <1010
5 −31 −7 5160 >1028 <1006

of each cluster may refer to one or two of the three days, or
even to some specific patterns of one of the three days only.
For example, a specific characteristic of cluster 2 is the very
strong MSL pressure gradient over eastern Europe and the

Balkans during D-1 and D days, while a specific character-
istic of cluster 5 is the formation of an upper low over the
eastern Balkans between D and END days. In Table 1, some
quantitative features of D day are presented for each cluster.
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Figure 9 As in Fig. 6, but for cluster 4 (18 snow events). 

 
Cluster 4 (Fig. 9): On D-1 day, an upper air trough appears over the northern Balkans, an 
anticyclone is centered over western Europe and a low pressure system is centered over 
the area between Crete and Cyprus. During D day, the upper air trough moves over the 
Aegean, the anticyclone moves eastwards over central Europe and the north-easterly flow 
over Athens is intensified, transferring cold air masses. This cluster presents the highest 
temperature in the lower troposphere over Athens, during D day, among all the clusters 
(850hPa: -6C, 1000-500hPa thickness: 5170m). During END day, the surface and upper 
air systems and the north-easterly flow are weakened. 
 

Fig. 9. As in Fig. 6, but for cluster 4 (18 snow events).

4 Conclusions

Snowfall in Athens can be generally considered as a rare
event and snowing for more 2 consecutive days is excep-
tional. The winters of 1982–1983, 1986–1987, and 1991–
1992 are the snowiest winters of the period 1958–2001.

The 61 snow events can be classified into 5 clusters.
Each distinct cluster describes a specific evolution of the 3-
dimensional atmospheric structure over Europe, associated
with snowfall in Athens. The main common characteristic
among the 5 clusters is a north-easterly surface flow over
Athens during D day, associated with the presence of a low
pressure system around Cyprus and an anticyclone over Eu-
rope. The corresponding air masses arriving in Athens are
cold and humid, as they are originated from the continen-
tal areas of Eastern Europe and they have passed over the

Aegean Sea. The differences among the 5 clusters refer to
the specific positions, the intensity and the trajectories of the
synoptic systems and the associated cold air masses in the
middle and the lower troposphere.
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Figure 10 As in Fig. 6, but for cluster 5 (12 snow events). 

 

Cluster 5 (Fig. 10): During D-1 and D days, a 500hPa trough and a cold air mass exist 
over the Balkans, while a north-easterly flow, associated with an anticyclone over central 
Europe and a depression between Crete and Cyprus, prevails over the Aegean and the 
Athens region. On END day, an upper low is formed over the north-eastern Balkans, 
while the high pressure gradient area in the lower troposphere moves eastwards affecting 
north-west Asia Minor. This cluster prevails mainly in late winter. 

Despite the fact that the D day synoptic conditions of the five clusters seem to be quite 
similar to each other, it has to be mentioned that each cluster is not characterized by the 
patterns of D day only, but also by these of D-1 and END days. This means, that each 
cluster is described by the whole set of 15 patterns corresponding to the five 
meteorological parameters of the three days. Thus, the individual characteristics of each 
cluster may refer to one or two of the three days, or even to some specific patterns of one 
of the three days only. For example, a specific characteristic of cluster 2 is the very strong 
MSL pressure gradient over eastern Europe and the Balkans during D-1 and D days, while 

Fig. 10. As in Fig. 6, but for cluster 5 (12 snow events).
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Hervella, B., Ṕerez-Mũnuzuri, V., Balseiro, C. F., and Montero, P.:
Application of the Non-Hydrostatic ARPS Model to the 21st–
23rd December 2000 Extreme Weather Event. Proceedings of the
4th EGS Plinius Conference held at Mallorca, Spain, October
2002.

Jansa, A., Genoves, A., Picornell, M. A., Campins, J., Riosalido, R.,
and Carretero, O.: Western Mediterranean cyclones and heavy
rain. Part 2: Statistical approach, Meteorol. Appl., 8, 43–56,
2001.

Jolliffe, I. T.: Principal Component Analysis, Springer, New York,
1986.

Karapiperis, Ph.: Diurnal variation and probabilities of rainfall at
Athens. Hypomnemata of National Observatory of Athens, Ser.
II, Meteorology, No. 12, 1963.

Keller, J. L.: Weather risk assessment at the dawn of ensemble nu-
merical weather prediction, Proceedings of the American Mete-
orological Society: 3rd Symposium on Environmental Applica-
tions, Orlando, J9–J15, 2002.

Kostopoulou, E. and Jones, P. D.: Assessment of climate extremes
in the Eastern Mediterranean, Meteorol. Atmos. Phys., 89, 69–
85, 2005.

Kutiel, H., Hirsch-Eshkol, T. R., and Turkes, M.: Sea level pressure
patterns associated with dry or wet monthly rainfall conditions in
Turkey, Theor. Appl. Climatol., 69, 39–67, 2001.

Manly, B. F. J.: Multivariate statistical methods: A primer, Chap-
man & Hall, London, 159 pp., 1986.

Adv. Geosci., 12, 127–135, 2007 www.adv-geosci.net/12/127/2007/



E. E. Houssos et al.: Atmospheric conditions over Europe and the Mediterranean 135

Metaxas, D. A.: Diurnal variation of cloudiness in Attica, Bull. Hel-
lenic Military Geographical Service, 98, 8–15, 1970 (in Greek).

Metaxas, D. A., Bartzokas, A., Repapis, C. C., and Dalezios, N.
R.: Atmospheric circulation anomalies in dry and wet winters in
Greece, Meteorol. Z., 2, 127–131, 1993.

Prezerakos, N. G. and Angouridakis, V. E.: Synoptic Consideration
of Snowfall in Athens, J. Climatol., 4, 269–285, 1984.

Romero, R., Guijarro, J. A., Ramis, C., and Alonso, S.: A 30-year
(1964–1993) daily rainfall data base for the Spanish Mediter-
ranean regions: first exploratory study, Int. J. Climatol., 18, 541–
560, 1998.

Sharma, S.: Applied Multivariate Techniques, John Wiley, New
York, 493 pp., 1996.

Sugar, C. A. and James, G. M.: Finding the Number of Clusters in
a Dataset: An Information – Theoretic Approach, J. Am. Stat.
Assoc., 98(463), 750–763, 2003.

Tayanc, M., Karaca, M., and Dalfes, H. N.: March 1987 cyclone
(blizzard) over the eastern Mediterranean and Balkan region as-
sociated with blocking, Mon. Wea. Rev., 126(11), 3036–3047,
1998.

www.adv-geosci.net/12/127/2007/ Adv. Geosci., 12, 127–135, 2007


